Water in the Atmosphere Notes

I. Water can change between solid, liquid, and gaseous states of matter freely at normal Earth temperatures.

	1. The heat require	d to melt ice is	(Jo	ules per gram).
	 Heat used to me the heat energy is u temperature until all 	It ice is called ised to simply melt the ice. I the ice has melted.	and does no	, (hidden), since t raise the
	3. The freezing of li	iquid water to ice is the opp f energy for every gram of	posite, and wil water frozen.	l release
B. Liq	quid to Gas:			
	1. It takes	of energy to var	oorize	of water
	2. J/g) to vaporize the	g) to vaporize the water, so it is called a "cooling" process!		
	3	is the opp o liquid water droplets calle s of heat energy for every g	oosite process ed clouds or fo gram of liquid	, where water is og. Condensation wil water formed.
	lid to Gas			
C. So				
C. So umidi A. Sa	ty is the amour	nt of water vapor in t	he air	
C. So Jmidi A. Sa B. Th	ty is the amour turation occurs wh e amount of water	nt of water vapor in t	he air	s upon
C. So Jmidi A. Sa B. Th C vapor tempe	ty is the amour turation occurs wh e amount of water content compared erature and pressu	nt of water vapor in t en vapor required for satura is the d to the amount of water ire.	he air ation depends ratio of the a vapor air can	s upon ir's actual water hold at that

Name: _____

Example of Relative Humidity Based on Temperature

Earth's Water Cycle and Relative Humidity

NAME: ____

Background Information:

I. All of Earth's weather occurs it the ______ section of Earth's atmosphere. Changes

in air masses occur because the ______ heats Earth's surface differently at different locations,

leading to differences in _____, which create differences in _____

_____. This will cause air masses to move, and bring changes in weather to any

location. So, all of Earth's "weather" is really powered by energy from the _____!

II. Parts of the Water Cycle

- **Precipitation** = water falling to Earth as rain, snow, sleet, hail, freezing rain, etc.
- Infiltration = water that soaks into the ground through pores in soil and rock to become groundwater
 - Groundwater = water that remains in the ground, flowing slowly after infiltration has occurred
- Runoff = the precipitation which cannot enter the ground due to impermeable surfaces (asphalt, clay, shale) simply flows down slope into surface waters (streams, rivers), and eventually returns to the oceans.
- Evaporation = ______
- Transpiration = ______
- Condensation = water vapor cools and condenses on tiny dust particles called _____

______to form liquid water droplets (clouds). This occurs because as air rises in the troposphere, it ______, and condensation of water vapor may occur

to form clouds. The reverse process may occur as some of the liquid water in clouds

Complete the water cvcle terms below:

	25-20-15-10 5 0 5 10 15 20 25 30 05 40 45 50°C
	Wet bulb
	Dry bulb
111. F	What two values are obtained with the sling psychrometer?
	and
	und
	Evaporation is a process, and therefore cvaporation from the wet bulb
	the temperature reading in that
	thermometer.
۶	On the sling psychrometer above, the dry bulb temperature is°C and the wet bulb temperature
	is°C. Therefore, the DIFFERENCE between these two values is (which indicates the
	correct column to use in the ESRT's.)
	Now turn to page 12 of the Earth Science Reference tables, and use the values to determine the dew
	point temperature:°C, and the relative humidity:%.
	In general, if there is less evaporation from the wet bulb, there will be less difference between the wet
	bulb and dry bulb temperatures, which would yield a dew point temperature,
	and a relative humidity %.
D	Cloude form whoneyor the sir temperature decreases to the
	Using the example above, show how this process occurs with rising moist air, on the grid below
	13°C
	15°C
	17°C
	20-10 20-10
	21°C
	23°C
	25°C ground level